Mister Exam

Derivative of ln(tg(x/2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /x\\
log|tan|-||
   \   \2//
log(tan(x2))\log{\left(\tan{\left(\frac{x}{2} \right)} \right)}
d /   /   /x\\\
--|log|tan|-|||
dx\   \   \2///
ddxlog(tan(x2))\frac{d}{d x} \log{\left(\tan{\left(\frac{x}{2} \right)} \right)}
Detail solution
  1. Let u=tan(x2)u = \tan{\left(\frac{x}{2} \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxtan(x2)\frac{d}{d x} \tan{\left(\frac{x}{2} \right)}:

    1. Rewrite the function to be differentiated:

      tan(x2)=sin(x2)cos(x2)\tan{\left(\frac{x}{2} \right)} = \frac{\sin{\left(\frac{x}{2} \right)}}{\cos{\left(\frac{x}{2} \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x2)f{\left(x \right)} = \sin{\left(\frac{x}{2} \right)} and g(x)=cos(x2)g{\left(x \right)} = \cos{\left(\frac{x}{2} \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x2u = \frac{x}{2}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 12\frac{1}{2}

        The result of the chain rule is:

        cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x2u = \frac{x}{2}.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 12\frac{1}{2}

        The result of the chain rule is:

        sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}

      Now plug in to the quotient rule:

      sin2(x2)2+cos2(x2)2cos2(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)}}

    The result of the chain rule is:

    sin2(x2)2+cos2(x2)2cos2(x2)tan(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)} \tan{\left(\frac{x}{2} \right)}}

  4. Now simplify:

    1(cos(x)+1)tan(x2)\frac{1}{\left(\cos{\left(x \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}


The answer is:

1(cos(x)+1)tan(x2)\frac{1}{\left(\cos{\left(x \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
       2/x\
    tan |-|
1       \2/
- + -------
2      2   
-----------
      /x\  
   tan|-|  
      \2/  
tan2(x2)2+12tan(x2)\frac{\frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}{\tan{\left(\frac{x}{2} \right)}}
The second derivative [src]
                             2
                /       2/x\\ 
                |1 + tan |-|| 
         2/x\   \        \2// 
2 + 2*tan |-| - --------------
          \2/         2/x\    
                   tan |-|    
                       \2/    
------------------------------
              4               
2tan2(x2)(tan2(x2)+1)2tan2(x2)+24\frac{2 \tan^{2}{\left(\frac{x}{2} \right)} - \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{\tan^{2}{\left(\frac{x}{2} \right)}} + 2}{4}
The third derivative [src]
              /                        2                  \
              |           /       2/x\\      /       2/x\\|
              |           |1 + tan |-||    2*|1 + tan |-|||
/       2/x\\ |     /x\   \        \2//      \        \2//|
|1 + tan |-||*|2*tan|-| + -------------- - ---------------|
\        \2// |     \2/         3/x\               /x\    |
              |              tan |-|            tan|-|    |
              \                  \2/               \2/    /
-----------------------------------------------------------
                             4                             
(tan2(x2)+1)(2tan(x2)2(tan2(x2)+1)tan(x2)+(tan2(x2)+1)2tan3(x2))4\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(2 \tan{\left(\frac{x}{2} \right)} - \frac{2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)}{\tan{\left(\frac{x}{2} \right)}} + \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{\tan^{3}{\left(\frac{x}{2} \right)}}\right)}{4}
The graph
Derivative of ln(tg(x/2))