Mister Exam

Derivative of csc(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
csc(x)
csc(x)\csc{\left(x \right)}
csc(x)
Detail solution
  1. Rewrite the function to be differentiated:

    csc(x)=1sin(x)\csc{\left(x \right)} = \frac{1}{\sin{\left(x \right)}}

  2. Let u=sin(x)u = \sin{\left(x \right)}.

  3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  4. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    The result of the chain rule is:

    cos(x)sin2(x)- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}


The answer is:

cos(x)sin2(x)- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
-cot(x)*csc(x)
cot(x)csc(x)- \cot{\left(x \right)} \csc{\left(x \right)}
The second derivative [src]
/         2   \       
\1 + 2*cot (x)/*csc(x)
(2cot2(x)+1)csc(x)\left(2 \cot^{2}{\left(x \right)} + 1\right) \csc{\left(x \right)}
The third derivative [src]
 /         2   \              
-\5 + 6*cot (x)/*cot(x)*csc(x)
(6cot2(x)+5)cot(x)csc(x)- \left(6 \cot^{2}{\left(x \right)} + 5\right) \cot{\left(x \right)} \csc{\left(x \right)}
The graph
Derivative of csc(x)