Mister Exam

Derivative of y=sinxcosxcscx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)*cos(x)*csc(x)
$$\sin{\left(x \right)} \cos{\left(x \right)} \csc{\left(x \right)}$$
d                       
--(sin(x)*cos(x)*csc(x))
dx                      
$$\frac{d}{d x} \sin{\left(x \right)} \cos{\left(x \right)} \csc{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of sine is cosine:

    ; to find :

    1. The derivative of cosine is negative sine:

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2                2                                        
cos (x)*csc(x) - sin (x)*csc(x) - cos(x)*cot(x)*csc(x)*sin(x)
$$- \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} - \sin^{2}{\left(x \right)} \csc{\left(x \right)} + \cos^{2}{\left(x \right)} \csc{\left(x \right)}$$
The second derivative [src]
/                        2                  2             /         2   \              \       
\-4*cos(x)*sin(x) - 2*cos (x)*cot(x) + 2*sin (x)*cot(x) + \1 + 2*cot (x)/*cos(x)*sin(x)/*csc(x)
$$\left(\left(2 \cot^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} + 2 \sin^{2}{\left(x \right)} \cot{\left(x \right)} - 2 \cos^{2}{\left(x \right)} \cot{\left(x \right)} - 4 \sin{\left(x \right)} \cos{\left(x \right)}\right) \csc{\left(x \right)}$$
The third derivative [src]
/       2           2           2    /         2   \        2    /         2   \                             /         2   \                     \       
\- 4*cos (x) + 4*sin (x) - 3*sin (x)*\1 + 2*cot (x)/ + 3*cos (x)*\1 + 2*cot (x)/ + 12*cos(x)*cot(x)*sin(x) - \5 + 6*cot (x)/*cos(x)*cot(x)*sin(x)/*csc(x)
$$\left(- \left(6 \cot^{2}{\left(x \right)} + 5\right) \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} - 3 \cdot \left(2 \cot^{2}{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} + 3 \cdot \left(2 \cot^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} + 12 \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} + 4 \sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \csc{\left(x \right)}$$
The graph
Derivative of y=sinxcosxcscx