Mister Exam

Derivative of y=sinxcosxcscx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)*cos(x)*csc(x)
sin(x)cos(x)csc(x)\sin{\left(x \right)} \cos{\left(x \right)} \csc{\left(x \right)}
d                       
--(sin(x)*cos(x)*csc(x))
dx                      
ddxsin(x)cos(x)csc(x)\frac{d}{d x} \sin{\left(x \right)} \cos{\left(x \right)} \csc{\left(x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)h(x)=f(x)g(x)ddxh(x)+f(x)h(x)ddxg(x)+g(x)h(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} h{\left(x \right)} = f{\left(x \right)} g{\left(x \right)} \frac{d}{d x} h{\left(x \right)} + f{\left(x \right)} h{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} h{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of cosine is negative sine:

      ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

    h(x)=csc(x)h{\left(x \right)} = \csc{\left(x \right)}; to find ddxh(x)\frac{d}{d x} h{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      csc(x)=1sin(x)\csc{\left(x \right)} = \frac{1}{\sin{\left(x \right)}}

    2. Let u=sin(x)u = \sin{\left(x \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      cos(x)sin2(x)- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    The result is: sin2(x)csc(x)+cos2(x)csc(x)cos2(x)sin(x)- \sin^{2}{\left(x \right)} \csc{\left(x \right)} + \cos^{2}{\left(x \right)} \csc{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}

  2. Now simplify:

    sin(x)- \sin{\left(x \right)}


The answer is:

sin(x)- \sin{\left(x \right)}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
   2                2                                        
cos (x)*csc(x) - sin (x)*csc(x) - cos(x)*cot(x)*csc(x)*sin(x)
sin(x)cos(x)cot(x)csc(x)sin2(x)csc(x)+cos2(x)csc(x)- \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} - \sin^{2}{\left(x \right)} \csc{\left(x \right)} + \cos^{2}{\left(x \right)} \csc{\left(x \right)}
The second derivative [src]
/                        2                  2             /         2   \              \       
\-4*cos(x)*sin(x) - 2*cos (x)*cot(x) + 2*sin (x)*cot(x) + \1 + 2*cot (x)/*cos(x)*sin(x)/*csc(x)
((2cot2(x)+1)sin(x)cos(x)+2sin2(x)cot(x)2cos2(x)cot(x)4sin(x)cos(x))csc(x)\left(\left(2 \cot^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} + 2 \sin^{2}{\left(x \right)} \cot{\left(x \right)} - 2 \cos^{2}{\left(x \right)} \cot{\left(x \right)} - 4 \sin{\left(x \right)} \cos{\left(x \right)}\right) \csc{\left(x \right)}
The third derivative [src]
/       2           2           2    /         2   \        2    /         2   \                             /         2   \                     \       
\- 4*cos (x) + 4*sin (x) - 3*sin (x)*\1 + 2*cot (x)/ + 3*cos (x)*\1 + 2*cot (x)/ + 12*cos(x)*cot(x)*sin(x) - \5 + 6*cot (x)/*cos(x)*cot(x)*sin(x)/*csc(x)
((6cot2(x)+5)sin(x)cos(x)cot(x)3(2cot2(x)+1)sin2(x)+3(2cot2(x)+1)cos2(x)+12sin(x)cos(x)cot(x)+4sin2(x)4cos2(x))csc(x)\left(- \left(6 \cot^{2}{\left(x \right)} + 5\right) \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} - 3 \cdot \left(2 \cot^{2}{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} + 3 \cdot \left(2 \cot^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} + 12 \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} + 4 \sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \csc{\left(x \right)}
The graph
Derivative of y=sinxcosxcscx