Detail solution
-
Apply the product rule:
; to find :
-
The derivative of sine is cosine:
; to find :
-
The derivative of cosine is negative sine:
; to find :
-
Rewrite the function to be differentiated:
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2 2
cos (x)*csc(x) - sin (x)*csc(x) - cos(x)*cot(x)*csc(x)*sin(x)
$$- \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} \csc{\left(x \right)} - \sin^{2}{\left(x \right)} \csc{\left(x \right)} + \cos^{2}{\left(x \right)} \csc{\left(x \right)}$$
The second derivative
[src]
/ 2 2 / 2 \ \
\-4*cos(x)*sin(x) - 2*cos (x)*cot(x) + 2*sin (x)*cot(x) + \1 + 2*cot (x)/*cos(x)*sin(x)/*csc(x)
$$\left(\left(2 \cot^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} + 2 \sin^{2}{\left(x \right)} \cot{\left(x \right)} - 2 \cos^{2}{\left(x \right)} \cot{\left(x \right)} - 4 \sin{\left(x \right)} \cos{\left(x \right)}\right) \csc{\left(x \right)}$$
The third derivative
[src]
/ 2 2 2 / 2 \ 2 / 2 \ / 2 \ \
\- 4*cos (x) + 4*sin (x) - 3*sin (x)*\1 + 2*cot (x)/ + 3*cos (x)*\1 + 2*cot (x)/ + 12*cos(x)*cot(x)*sin(x) - \5 + 6*cot (x)/*cos(x)*cot(x)*sin(x)/*csc(x)
$$\left(- \left(6 \cot^{2}{\left(x \right)} + 5\right) \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} - 3 \cdot \left(2 \cot^{2}{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} + 3 \cdot \left(2 \cot^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} + 12 \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(x \right)} + 4 \sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \csc{\left(x \right)}$$