Apply the product rule:
dxdf(x)g(x)h(x)=f(x)g(x)dxdh(x)+f(x)h(x)dxdg(x)+g(x)h(x)dxdf(x)
f(x)=sin(x); to find dxdf(x):
-
The derivative of sine is cosine:
dxdsin(x)=cos(x)
g(x)=cos(x); to find dxdg(x):
-
The derivative of cosine is negative sine:
dxdcos(x)=−sin(x)
h(x)=csc(x); to find dxdh(x):
-
Rewrite the function to be differentiated:
csc(x)=sin(x)1
-
Let u=sin(x).
-
Apply the power rule: u1 goes to −u21
-
Then, apply the chain rule. Multiply by dxdsin(x):
-
The derivative of sine is cosine:
dxdsin(x)=cos(x)
The result of the chain rule is:
−sin2(x)cos(x)
The result is: −sin2(x)csc(x)+cos2(x)csc(x)−sin(x)cos2(x)