Mister Exam

Other calculators:


csc(x)

Limit of the function csc(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  csc(x)
x->pi+      
$$\lim_{x \to \pi^+} \csc{\left(x \right)}$$
Limit(csc(x), x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-} \csc{\left(x \right)} = -\infty$$
More at x→pi from the left
$$\lim_{x \to \pi^+} \csc{\left(x \right)} = -\infty$$
$$\lim_{x \to \infty} \csc{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \csc{\left(x \right)} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \csc{\left(x \right)} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \csc{\left(x \right)} = \frac{1}{\sin{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \csc{\left(x \right)} = \frac{1}{\sin{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \csc{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
One‐sided limits [src]
 lim  csc(x)
x->pi+      
$$\lim_{x \to \pi^+} \csc{\left(x \right)}$$
-oo
$$-\infty$$
= -151.00110375841
 lim  csc(x)
x->pi-      
$$\lim_{x \to \pi^-} \csc{\left(x \right)}$$
oo
$$\infty$$
= 151.001103758404
= 151.001103758404
Numerical answer [src]
-151.00110375841
-151.00110375841
The graph
Limit of the function csc(x)