Mister Exam

Other calculators:


csc(x)

Limit of the function csc(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  csc(x)
x->pi+      
limxπ+csc(x)\lim_{x \to \pi^+} \csc{\left(x \right)}
Limit(csc(x), x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0123456-6-5-4-3-2-1-50000000000000005000000000000000
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limxπcsc(x)=\lim_{x \to \pi^-} \csc{\left(x \right)} = -\infty
More at x→pi from the left
limxπ+csc(x)=\lim_{x \to \pi^+} \csc{\left(x \right)} = -\infty
limxcsc(x)=,\lim_{x \to \infty} \csc{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx0csc(x)=\lim_{x \to 0^-} \csc{\left(x \right)} = -\infty
More at x→0 from the left
limx0+csc(x)=\lim_{x \to 0^+} \csc{\left(x \right)} = \infty
More at x→0 from the right
limx1csc(x)=1sin(1)\lim_{x \to 1^-} \csc{\left(x \right)} = \frac{1}{\sin{\left(1 \right)}}
More at x→1 from the left
limx1+csc(x)=1sin(1)\lim_{x \to 1^+} \csc{\left(x \right)} = \frac{1}{\sin{\left(1 \right)}}
More at x→1 from the right
limxcsc(x)=,\lim_{x \to -\infty} \csc{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
More at x→-oo
One‐sided limits [src]
 lim  csc(x)
x->pi+      
limxπ+csc(x)\lim_{x \to \pi^+} \csc{\left(x \right)}
-oo
-\infty
= -151.00110375841
 lim  csc(x)
x->pi-      
limxπcsc(x)\lim_{x \to \pi^-} \csc{\left(x \right)}
oo
\infty
= 151.001103758404
= 151.001103758404
Numerical answer [src]
-151.00110375841
-151.00110375841
The graph
Limit of the function csc(x)