Mister Exam

Derivative of cscx-sec(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
csc(x) - sec(2*x)
csc(x)sec(2x)\csc{\left(x \right)} - \sec{\left(2 x \right)}
d                    
--(csc(x) - sec(2*x))
dx                   
ddx(csc(x)sec(2x))\frac{d}{d x} \left(\csc{\left(x \right)} - \sec{\left(2 x \right)}\right)
Detail solution
  1. Differentiate csc(x)sec(2x)\csc{\left(x \right)} - \sec{\left(2 x \right)} term by term:

    1. Rewrite the function to be differentiated:

      csc(x)=1sin(x)\csc{\left(x \right)} = \frac{1}{\sin{\left(x \right)}}

    2. Let u=sin(x)u = \sin{\left(x \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      cos(x)sin2(x)- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    5. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Rewrite the function to be differentiated:

        sec(2x)=1cos(2x)\sec{\left(2 x \right)} = \frac{1}{\cos{\left(2 x \right)}}

      2. Let u=cos(2x)u = \cos{\left(2 x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxcos(2x)\frac{d}{d x} \cos{\left(2 x \right)}:

        1. Let u=2xu = 2 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 22

          The result of the chain rule is:

          2sin(2x)- 2 \sin{\left(2 x \right)}

        The result of the chain rule is:

        2sin(2x)cos2(2x)\frac{2 \sin{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}

      So, the result is: 2sin(2x)cos2(2x)- \frac{2 \sin{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}

    The result is: 2sin(2x)cos2(2x)cos(x)sin2(x)- \frac{2 \sin{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} - \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}

  2. Now simplify:

    (4sin2(x)4sin(x)+41sin2(x))cos(x)(2sin2(x)1)2\frac{\left(- 4 \sin^{2}{\left(x \right)} - 4 \sin{\left(x \right)} + 4 - \frac{1}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\left(2 \sin^{2}{\left(x \right)} - 1\right)^{2}}


The answer is:

(4sin2(x)4sin(x)+41sin2(x))cos(x)(2sin2(x)1)2\frac{\left(- 4 \sin^{2}{\left(x \right)} - 4 \sin{\left(x \right)} + 4 - \frac{1}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\left(2 \sin^{2}{\left(x \right)} - 1\right)^{2}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
-cot(x)*csc(x) - 2*sec(2*x)*tan(2*x)
2tan(2x)sec(2x)cot(x)csc(x)- 2 \tan{\left(2 x \right)} \sec{\left(2 x \right)} - \cot{\left(x \right)} \csc{\left(x \right)}
The second derivative [src]
   2             /       2   \               2                   /       2     \         
cot (x)*csc(x) + \1 + cot (x)/*csc(x) - 4*tan (2*x)*sec(2*x) - 4*\1 + tan (2*x)/*sec(2*x)
4(tan2(2x)+1)sec(2x)+(cot2(x)+1)csc(x)4tan2(2x)sec(2x)+cot2(x)csc(x)- 4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \sec{\left(2 x \right)} + \left(\cot^{2}{\left(x \right)} + 1\right) \csc{\left(x \right)} - 4 \tan^{2}{\left(2 x \right)} \sec{\left(2 x \right)} + \cot^{2}{\left(x \right)} \csc{\left(x \right)}
The third derivative [src]
 /   3                  3                   /       2   \                    /       2     \                  \
-\cot (x)*csc(x) + 8*tan (2*x)*sec(2*x) + 5*\1 + cot (x)/*cot(x)*csc(x) + 40*\1 + tan (2*x)/*sec(2*x)*tan(2*x)/
(40(tan2(2x)+1)tan(2x)sec(2x)+5(cot2(x)+1)cot(x)csc(x)+8tan3(2x)sec(2x)+cot3(x)csc(x))- (40 \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)} \sec{\left(2 x \right)} + 5 \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} \csc{\left(x \right)} + 8 \tan^{3}{\left(2 x \right)} \sec{\left(2 x \right)} + \cot^{3}{\left(x \right)} \csc{\left(x \right)})
The graph
Derivative of cscx-sec(2x)