Mister Exam

Derivative of cscx-sec(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
csc(x) - sec(2*x)
$$\csc{\left(x \right)} - \sec{\left(2 x \right)}$$
d                    
--(csc(x) - sec(2*x))
dx                   
$$\frac{d}{d x} \left(\csc{\left(x \right)} - \sec{\left(2 x \right)}\right)$$
Detail solution
  1. Differentiate term by term:

    1. Rewrite the function to be differentiated:

    2. Let .

    3. Apply the power rule: goes to

    4. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    5. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
-cot(x)*csc(x) - 2*sec(2*x)*tan(2*x)
$$- 2 \tan{\left(2 x \right)} \sec{\left(2 x \right)} - \cot{\left(x \right)} \csc{\left(x \right)}$$
The second derivative [src]
   2             /       2   \               2                   /       2     \         
cot (x)*csc(x) + \1 + cot (x)/*csc(x) - 4*tan (2*x)*sec(2*x) - 4*\1 + tan (2*x)/*sec(2*x)
$$- 4 \left(\tan^{2}{\left(2 x \right)} + 1\right) \sec{\left(2 x \right)} + \left(\cot^{2}{\left(x \right)} + 1\right) \csc{\left(x \right)} - 4 \tan^{2}{\left(2 x \right)} \sec{\left(2 x \right)} + \cot^{2}{\left(x \right)} \csc{\left(x \right)}$$
The third derivative [src]
 /   3                  3                   /       2   \                    /       2     \                  \
-\cot (x)*csc(x) + 8*tan (2*x)*sec(2*x) + 5*\1 + cot (x)/*cot(x)*csc(x) + 40*\1 + tan (2*x)/*sec(2*x)*tan(2*x)/
$$- (40 \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)} \sec{\left(2 x \right)} + 5 \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} \csc{\left(x \right)} + 8 \tan^{3}{\left(2 x \right)} \sec{\left(2 x \right)} + \cot^{3}{\left(x \right)} \csc{\left(x \right)})$$
The graph
Derivative of cscx-sec(2x)