Mister Exam

Derivative of arcctgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acot(x)
$$\operatorname{acot}{\left(x \right)}$$
d          
--(acot(x))
dx         
$$\frac{d}{d x} \operatorname{acot}{\left(x \right)}$$
The graph
The first derivative [src]
 -1   
------
     2
1 + x 
$$- \frac{1}{x^{2} + 1}$$
The second derivative [src]
   2*x   
---------
        2
/     2\ 
\1 + x / 
$$\frac{2 x}{\left(x^{2} + 1\right)^{2}}$$
The third derivative [src]
  /        2 \
  |     4*x  |
2*|1 - ------|
  |         2|
  \    1 + x /
--------------
          2   
  /     2\    
  \1 + x /    
$$\frac{2 \left(- \frac{4 x^{2}}{x^{2} + 1} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$
The graph
Derivative of arcctgx