Mister Exam

Other calculators

Derivative of arcctg^2*5x*ln(x-4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2                
acot (5)*x*log(x - 4)
$$x \operatorname{acot}^{2}{\left(5 \right)} \log{\left(x - 4 \right)}$$
(acot(5)^2*x)*log(x - 4)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
                            2   
    2                 x*acot (5)
acot (5)*log(x - 4) + ----------
                        x - 4   
$$\frac{x \operatorname{acot}^{2}{\left(5 \right)}}{x - 4} + \log{\left(x - 4 \right)} \operatorname{acot}^{2}{\left(5 \right)}$$
The second derivative [src]
    2    /      x   \
acot (5)*|2 - ------|
         \    -4 + x/
---------------------
        -4 + x       
$$\frac{\left(- \frac{x}{x - 4} + 2\right) \operatorname{acot}^{2}{\left(5 \right)}}{x - 4}$$
The third derivative [src]
    2    /      2*x  \
acot (5)*|-3 + ------|
         \     -4 + x/
----------------------
              2       
      (-4 + x)        
$$\frac{\left(\frac{2 x}{x - 4} - 3\right) \operatorname{acot}^{2}{\left(5 \right)}}{\left(x - 4\right)^{2}}$$