Mister Exam

Derivative of sqrt(arctgx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________
\/ acot(x) 
$$\sqrt{\operatorname{acot}{\left(x \right)}}$$
sqrt(acot(x))
The graph
The first derivative [src]
         -1           
----------------------
  /     2\   _________
2*\1 + x /*\/ acot(x) 
$$- \frac{1}{2 \left(x^{2} + 1\right) \sqrt{\operatorname{acot}{\left(x \right)}}}$$
The second derivative [src]
            1        
    x - ---------    
        4*acot(x)    
---------------------
        2            
/     2\    _________
\1 + x / *\/ acot(x) 
$$\frac{x - \frac{1}{4 \operatorname{acot}{\left(x \right)}}}{\left(x^{2} + 1\right)^{2} \sqrt{\operatorname{acot}{\left(x \right)}}}$$
The third derivative [src]
        2                                            
     4*x              3                   3*x        
1 - ------ - ------------------- + ------------------
         2     /     2\     2        /     2\        
    1 + x    8*\1 + x /*acot (x)   2*\1 + x /*acot(x)
-----------------------------------------------------
                        2                            
                /     2\    _________                
                \1 + x / *\/ acot(x)                 
$$\frac{- \frac{4 x^{2}}{x^{2} + 1} + \frac{3 x}{2 \left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} + 1 - \frac{3}{8 \left(x^{2} + 1\right) \operatorname{acot}^{2}{\left(x \right)}}}{\left(x^{2} + 1\right)^{2} \sqrt{\operatorname{acot}{\left(x \right)}}}$$
The graph
Derivative of sqrt(arctgx)