Mister Exam

Derivative of arcctg(x)log(3)x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acot(x)*log(3)*x
$$x \log{\left(3 \right)} \operatorname{acot}{\left(x \right)}$$
d                   
--(acot(x)*log(3)*x)
dx                  
$$\frac{d}{d x} x \log{\left(3 \right)} \operatorname{acot}{\left(x \right)}$$
The graph
The first derivative [src]
                 x*log(3)
acot(x)*log(3) - --------
                       2 
                  1 + x  
$$- \frac{x \log{\left(3 \right)}}{x^{2} + 1} + \log{\left(3 \right)} \operatorname{acot}{\left(x \right)}$$
The second derivative [src]
  /        2  \       
  |       x   |       
2*|-1 + ------|*log(3)
  |          2|       
  \     1 + x /       
----------------------
             2        
        1 + x         
$$\frac{2 \left(\frac{x^{2}}{x^{2} + 1} - 1\right) \log{\left(3 \right)}}{x^{2} + 1}$$
The third derivative [src]
    /        2 \       
    |     4*x  |       
2*x*|4 - ------|*log(3)
    |         2|       
    \    1 + x /       
-----------------------
               2       
       /     2\        
       \1 + x /        
$$\frac{2 x \left(- \frac{4 x^{2}}{x^{2} + 1} + 4\right) \log{\left(3 \right)}}{\left(x^{2} + 1\right)^{2}}$$
The graph
Derivative of arcctg(x)log(3)x