Mister Exam

Derivative of 3sinxcosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*sin(x)*cos(x)
3sin(x)cos(x)3 \sin{\left(x \right)} \cos{\left(x \right)}
d                  
--(3*sin(x)*cos(x))
dx                 
ddx3sin(x)cos(x)\frac{d}{d x} 3 \sin{\left(x \right)} \cos{\left(x \right)}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result is: sin2(x)+cos2(x)- \sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}

    So, the result is: 3sin2(x)+3cos2(x)- 3 \sin^{2}{\left(x \right)} + 3 \cos^{2}{\left(x \right)}

  2. Now simplify:

    3cos(2x)3 \cos{\left(2 x \right)}


The answer is:

3cos(2x)3 \cos{\left(2 x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
       2           2   
- 3*sin (x) + 3*cos (x)
3sin2(x)+3cos2(x)- 3 \sin^{2}{\left(x \right)} + 3 \cos^{2}{\left(x \right)}
The second derivative [src]
-12*cos(x)*sin(x)
12sin(x)cos(x)- 12 \sin{\left(x \right)} \cos{\left(x \right)}
The third derivative [src]
   /   2         2   \
12*\sin (x) - cos (x)/
12(sin2(x)cos2(x))12 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)
The graph
Derivative of 3sinxcosx