Mister Exam

Derivative of y=3sint

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*sin(t)
3sin(t)3 \sin{\left(t \right)}
d           
--(3*sin(t))
dt          
ddt3sin(t)\frac{d}{d t} 3 \sin{\left(t \right)}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. The derivative of sine is cosine:

      ddtsin(t)=cos(t)\frac{d}{d t} \sin{\left(t \right)} = \cos{\left(t \right)}

    So, the result is: 3cos(t)3 \cos{\left(t \right)}


The answer is:

3cos(t)3 \cos{\left(t \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
3*cos(t)
3cos(t)3 \cos{\left(t \right)}
The second derivative [src]
-3*sin(t)
3sin(t)- 3 \sin{\left(t \right)}
The third derivative [src]
-3*cos(t)
3cos(t)- 3 \cos{\left(t \right)}
The graph
Derivative of y=3sint