Mister Exam

Derivative of tg4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tan(4*x)
tan(4x)\tan{\left(4 x \right)}
d           
--(tan(4*x))
dx          
ddxtan(4x)\frac{d}{d x} \tan{\left(4 x \right)}
Detail solution
  1. Rewrite the function to be differentiated:

    tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

  2. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4cos(4x)4 \cos{\left(4 x \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4sin(4x)- 4 \sin{\left(4 x \right)}

    Now plug in to the quotient rule:

    4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

  3. Now simplify:

    4cos2(4x)\frac{4}{\cos^{2}{\left(4 x \right)}}


The answer is:

4cos2(4x)\frac{4}{\cos^{2}{\left(4 x \right)}}

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
         2     
4 + 4*tan (4*x)
4tan2(4x)+44 \tan^{2}{\left(4 x \right)} + 4
The second derivative [src]
   /       2     \         
32*\1 + tan (4*x)/*tan(4*x)
32(tan2(4x)+1)tan(4x)32 \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan{\left(4 x \right)}
The third derivative [src]
    /       2     \ /         2     \
128*\1 + tan (4*x)/*\1 + 3*tan (4*x)/
128(tan2(4x)+1)(3tan2(4x)+1)128 \left(\tan^{2}{\left(4 x \right)} + 1\right) \left(3 \tan^{2}{\left(4 x \right)} + 1\right)
The graph
Derivative of tg4x