Mister Exam

Other calculators


20/3*sin(x)*cos(x)

Derivative of 20/3*sin(x)*cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
20*sin(x)*cos(x)
----------------
       3        
$$\frac{20 \sin{\left(x \right)} \cos{\left(x \right)}}{3}$$
d /20*sin(x)*cos(x)\
--|----------------|
dx\       3        /
$$\frac{d}{d x} \frac{20 \sin{\left(x \right)} \cos{\left(x \right)}}{3}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ; to find :

      1. The derivative of cosine is negative sine:

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        2            2   
  20*sin (x)   20*cos (x)
- ---------- + ----------
      3            3     
$$- \frac{20 \sin^{2}{\left(x \right)}}{3} + \frac{20 \cos^{2}{\left(x \right)}}{3}$$
The second derivative [src]
-80*cos(x)*sin(x)
-----------------
        3        
$$- \frac{80 \sin{\left(x \right)} \cos{\left(x \right)}}{3}$$
The third derivative [src]
   /   2         2   \
80*\sin (x) - cos (x)/
----------------------
          3           
$$\frac{80 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{3}$$
The graph
Derivative of 20/3*sin(x)*cos(x)