$$\lim_{i \to \infty}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}$$
$$\lim_{i \to 0^-}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}$$
More at i→0 from the left$$\lim_{i \to 0^+}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}$$
More at i→0 from the right$$\lim_{i \to 1^-}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}$$
More at i→1 from the left$$\lim_{i \to 1^+}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}$$
More at i→1 from the right$$\lim_{i \to -\infty}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}$$
More at i→-oo