Mister Exam

Other calculators:

Limit of the function i/(1+i)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  I  \
 lim |-----|
i->oo\1 + I/
limi(i1+i)\lim_{i \to \infty}\left(\frac{i}{1 + i}\right)
Limit(i/(1 + i), i, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
I*(1 - I)
---------
    2    
i(1i)2\frac{i \left(1 - i\right)}{2}
Other limits i→0, -oo, +oo, 1
limi(i1+i)=i(1i)2\lim_{i \to \infty}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
limi0(i1+i)=i(1i)2\lim_{i \to 0^-}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
More at i→0 from the left
limi0+(i1+i)=i(1i)2\lim_{i \to 0^+}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
More at i→0 from the right
limi1(i1+i)=i(1i)2\lim_{i \to 1^-}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
More at i→1 from the left
limi1+(i1+i)=i(1i)2\lim_{i \to 1^+}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
More at i→1 from the right
limi(i1+i)=i(1i)2\lim_{i \to -\infty}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
More at i→-oo