Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of log(x)*tan(x)
Limit of log(cos(x))/x^2
Limit of sin(8*x)/x
Limit of (-1+e^(3*x)-3*x)/sin(2*x)^2
Identical expressions
i/(one +i)
i divide by (1 plus i)
i divide by (one plus i)
i/1+i
i divide by (1+i)
Similar expressions
i/(1-i)
Limit of the function
/
i/(1+i)
Limit of the function i/(1+i)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ I \ lim |-----| i->oo\1 + I/
lim
i
→
∞
(
i
1
+
i
)
\lim_{i \to \infty}\left(\frac{i}{1 + i}\right)
i
→
∞
lim
(
1
+
i
i
)
Limit(i/(1 + i), i, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution
[src]
I*(1 - I) --------- 2
i
(
1
−
i
)
2
\frac{i \left(1 - i\right)}{2}
2
i
(
1
−
i
)
Expand and simplify
Other limits i→0, -oo, +oo, 1
lim
i
→
∞
(
i
1
+
i
)
=
i
(
1
−
i
)
2
\lim_{i \to \infty}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
i
→
∞
lim
(
1
+
i
i
)
=
2
i
(
1
−
i
)
lim
i
→
0
−
(
i
1
+
i
)
=
i
(
1
−
i
)
2
\lim_{i \to 0^-}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
i
→
0
−
lim
(
1
+
i
i
)
=
2
i
(
1
−
i
)
More at i→0 from the left
lim
i
→
0
+
(
i
1
+
i
)
=
i
(
1
−
i
)
2
\lim_{i \to 0^+}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
i
→
0
+
lim
(
1
+
i
i
)
=
2
i
(
1
−
i
)
More at i→0 from the right
lim
i
→
1
−
(
i
1
+
i
)
=
i
(
1
−
i
)
2
\lim_{i \to 1^-}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
i
→
1
−
lim
(
1
+
i
i
)
=
2
i
(
1
−
i
)
More at i→1 from the left
lim
i
→
1
+
(
i
1
+
i
)
=
i
(
1
−
i
)
2
\lim_{i \to 1^+}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
i
→
1
+
lim
(
1
+
i
i
)
=
2
i
(
1
−
i
)
More at i→1 from the right
lim
i
→
−
∞
(
i
1
+
i
)
=
i
(
1
−
i
)
2
\lim_{i \to -\infty}\left(\frac{i}{1 + i}\right) = \frac{i \left(1 - i\right)}{2}
i
→
−
∞
lim
(
1
+
i
i
)
=
2
i
(
1
−
i
)
More at i→-oo