oo ____ \ ` \ n - 1 \ x / --------- / n*(n + 1) /___, n = 1
Sum(x^(n - 1)/((n*(n + 1))), (n, 1, oo))
/1 (2 - 2*x)*log(1 - x) |- + -------------------- for |x| <= 1 |x 2 | 2*x | | oo | ____ < \ ` | \ n | \ x | ) ---------- otherwise | / 2 | / n*x + x*n | /___, \ n = 1
Piecewise((1/x + (2 - 2*x)*log(1 - x)/(2*x^2), |x| <= 1), (Sum(x^n/(n*x + x*n^2), (n, 1, oo)), True))
x^n/n
(x-1)^n
1/2^(n!)
n^2/n!
x^n/n!
k!/(n!*(n+k)!)
csc(n)^2/n^3
1/n^2
1/n^4
1/n^6
1/n
(-1)^n
(-1)^(n + 1)/n
(n + 2)*(-1)^(n - 1)
(3*n - 1)/(-5)^n
(-1)^(n - 1)*n/(6*n - 5)
(-1)^(n + 1)/n*x^n
(3*n - 1)/(-5)^n