Mister Exam

Other calculators


n^n/2^(n+1)
  • How to use it?

  • Sum of series:
  • 6/9n^2+12n-5 6/9n^2+12n-5
  • 5^n 5^n
  • n^n/2^(n+1) n^n/2^(n+1)
  • 1/(3n+1)(3n+4) 1/(3n+1)(3n+4)
  • Identical expressions

  • n^n/ two ^(n+ one)
  • n to the power of n divide by 2 to the power of (n plus 1)
  • n to the power of n divide by two to the power of (n plus one)
  • nn/2(n+1)
  • nn/2n+1
  • n^n/2^n+1
  • n^n divide by 2^(n+1)
  • Similar expressions

  • n^n/2^(n-1)

Sum of series n^n/2^(n+1)



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \       n  
  \     n   
   )  ------
  /    n + 1
 /    2     
/___,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{n^{n}}{2^{n + 1}}$$
Sum(n^n/2^(n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{n^{n}}{2^{n + 1}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 2^{- n - 1} n^{n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(2^{- n - 1} \cdot 2^{n + 2} n^{n} \left(n + 1\right)^{- n - 1}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The answer [src]
  oo            
 ___            
 \  `           
  \    -1 - n  n
  /   2      *n 
 /__,           
n = 1           
$$\sum_{n=1}^{\infty} 2^{- n - 1} n^{n}$$
Sum(2^(-1 - n)*n^n, (n, 1, oo))
The graph
Sum of series n^n/2^(n+1)

    Examples of finding the sum of a series