Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 3/(n*(n+2)) 3/(n*(n+2))
  • 3/(n(n+2)) 3/(n(n+2))
  • 1/((3n+1)*(3n+4)) 1/((3n+1)*(3n+4))
  • (sin(2^n))^2/n^2 (sin(2^n))^2/n^2
  • Identical expressions

  • x^n/factorial(n^ one)
  • x to the power of n divide by factorial(n to the power of 1)
  • x to the power of n divide by factorial(n to the power of one)
  • xn/factorial(n1)
  • xn/factorialn1
  • x^n/factorialn^1
  • x^n divide by factorial(n^1)

Sum of series x^n/factorial(n^1)



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \       n 
  \     x  
   )  -----
  /   / 1\ 
 /    \n /!
/___,      
n = 1      
$$\sum_{n=1}^{\infty} \frac{x^{n}}{\left(n^{1}\right)!}$$
Sum(x^n/factorial(n^1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{x^{n}}{\left(n^{1}\right)!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n!}$$
and
$$x_{0} = 0$$
,
$$d = 1$$
,
$$c = 1$$
then
$$R = \lim_{n \to \infty} \left|{\frac{\left(n + 1\right)!}{n!}}\right|$$
Let's take the limit
we find
$$R = \infty$$
The answer [src]
  /       x\
  |  1   e |
x*|- - + --|
  \  x   x /
$$x \left(\frac{e^{x}}{x} - \frac{1}{x}\right)$$
x*(-1/x + exp(x)/x)

    Examples of finding the sum of a series