Mister Exam

Other calculators


n^2/3^n

Sum of series n^2/3^n



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \     2
  \   n 
   )  --
  /    n
 /    3 
/___,   
n = 1   
n=1n23n\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}
Sum(n^2/3^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
n23n\frac{n^{2}}{3^{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n2a_{n} = n^{2}
and
x0=3x_{0} = -3
,
d=1d = -1
,
c=0c = 0
then
1R=~(3+limn(n2(n+1)2))\frac{1}{R} = \tilde{\infty} \left(-3 + \lim_{n \to \infty}\left(\frac{n^{2}}{\left(n + 1\right)^{2}}\right)\right)
Let's take the limit
we find
False

R=0R = 0
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.502
The answer [src]
3/2
32\frac{3}{2}
3/2
Numerical answer [src]
1.50000000000000000000000000000
1.50000000000000000000000000000
The graph
Sum of series n^2/3^n

    Examples of finding the sum of a series