Given number:
$$\frac{2 n + 1}{2^{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 2 n + 1$$
and
$$x_{0} = -2$$
,
$$d = -1$$
,
$$c = 0$$
then
$$\frac{1}{R} = \tilde{\infty} \left(-2 + \lim_{n \to \infty}\left(\frac{2 n + 1}{2 n + 3}\right)\right)$$
Let's take the limitwe find
False
$$R = 0$$