Mister Exam

Other calculators


sin(1/n)n

Sum of series sin(1/n)n



=

The solution

You have entered [src]
  oo          
 ___          
 \  `         
  \      /1\  
   )  sin|-|*n
  /      \n/  
 /__,         
n = 1         
$$\sum_{n=1}^{\infty} n \sin{\left(\frac{1}{n} \right)}$$
Sum(sin(1/n)*n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$n \sin{\left(\frac{1}{n} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = n \sin{\left(\frac{1}{n} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{n \left|{\frac{\sin{\left(\frac{1}{n} \right)}}{\sin{\left(\frac{1}{n + 1} \right)}}}\right|}{n + 1}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer
The series diverges
The graph
Sum of series sin(1/n)n

    Examples of finding the sum of a series