Mister Exam

Other calculators

Sum of series a^n



=

The solution

You have entered [src]
  oo    
 ___    
 \  `   
  \    n
  /   a 
 /__,   
n = 1   
n=1an\sum_{n=1}^{\infty} a^{n}
Sum(a^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
ana^{n}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1a_{n} = 1
and
x0=ax_{0} = - a
,
d=1d = 1
,
c=0c = 0
then
R=~(a+limn1)R = \tilde{\infty} \left(- a + \lim_{n \to \infty} 1\right)
Let's take the limit
we find
R=~(1a)R = \tilde{\infty} \left(1 - a\right)
The answer [src]
/   a                 
| -----    for |a| < 1
| 1 - a               
|                     
|  oo                 
< ___                 
| \  `                
|  \    n             
|  /   a    otherwise 
| /__,                
\n = 1                
{a1afora<1n=1anotherwise\begin{cases} \frac{a}{1 - a} & \text{for}\: \left|{a}\right| < 1 \\\sum_{n=1}^{\infty} a^{n} & \text{otherwise} \end{cases}
Piecewise((a/(1 - a), |a| < 1), (Sum(a^n, (n, 1, oo)), True))

    Examples of finding the sum of a series