Mister Exam

Other calculators


n*(arcsin(1/n))^n
  • How to use it?

  • Sum of series:
  • (2^n+(-1)^n)/5^n (2^n+(-1)^n)/5^n
  • (n+1)/5^n (n+1)/5^n
  • (-1/2)^n (-1/2)^n
  • (5^n-4^n)/20^n (5^n-4^n)/20^n
  • Identical expressions

  • n*(arcsin(one /n))^n
  • n multiply by (arc sinus of (1 divide by n)) to the power of n
  • n multiply by (arc sinus of (one divide by n)) to the power of n
  • n*(arcsin(1/n))n
  • n*arcsin1/nn
  • n(arcsin(1/n))^n
  • n(arcsin(1/n))n
  • narcsin1/nn
  • narcsin1/n^n
  • n*(arcsin(1 divide by n))^n

Sum of series n*(arcsin(1/n))^n



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \         n/1\
   )  n*asin |-|
  /          \n/
 /__,           
n = 1           
$$\sum_{n=1}^{\infty} n \operatorname{asin}^{n}{\left(\frac{1}{n} \right)}$$
Sum(n*asin(1/n)^n, (n, 1, oo))
The rate of convergence of the power series
Numerical answer [src]
2.25495253951805932524950787259
2.25495253951805932524950787259
The graph
Sum of series n*(arcsin(1/n))^n

    Examples of finding the sum of a series