Given number:
$$\left(1 - \frac{1}{n}\right)^{n^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \left(1 - \frac{1}{n}\right)^{n^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\left(1 - \frac{1}{n + 1}\right)^{- \left(n + 1\right)^{2}} \left|{\left(1 - \frac{1}{n}\right)^{n^{2}}}\right|\right)$$
Let's take the limitwe find
False
False
False