$$\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{n^{2}} = 0$$ $$\lim_{n \to 0^-} \left(1 - \frac{1}{n}\right)^{n^{2}} = 1$$ More at n→0 from the left $$\lim_{n \to 0^+} \left(1 - \frac{1}{n}\right)^{n^{2}} = 1$$ More at n→0 from the right $$\lim_{n \to 1^-} \left(1 - \frac{1}{n}\right)^{n^{2}} = 0$$ More at n→1 from the left $$\lim_{n \to 1^+} \left(1 - \frac{1}{n}\right)^{n^{2}} = 0$$ More at n→1 from the right $$\lim_{n \to -\infty} \left(1 - \frac{1}{n}\right)^{n^{2}} = \infty$$ More at n→-oo