Mister Exam

Other calculators

Sum of series seno^2x(2x)



=

The solution

You have entered [src]
  oo               
 ___               
 \  `              
  \      2         
  /   sin (o)*x*2*x
 /__,              
i = 1              
$$\sum_{i=1}^{\infty} 2 x x \sin^{2}{\left(o \right)}$$
Sum((sin(o)^2*x)*(2*x), (i, 1, oo))
The radius of convergence of the power series
Given number:
$$2 x x \sin^{2}{\left(o \right)}$$
It is a series of species
$$a_{i} \left(c x - x_{0}\right)^{d i}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}$$
In this case
$$a_{i} = 2 x^{2} \sin^{2}{\left(o \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{i \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
    2    2   
oo*x *sin (o)
$$\infty x^{2} \sin^{2}{\left(o \right)}$$
oo*x^2*sin(o)^2

    Examples of finding the sum of a series