Mister Exam

Other calculators


1/(x*(1-1/x)^2)
  • How to use it?

  • Sum of series:
  • 1/(25n^2+5n-6) 1/(25n^2+5n-6)
  • sin(n*x)/(n^2+1)
  • 1/(x*(1-1/x)^2) 1/(x*(1-1/x)^2)
  • (x-2)^n/(n*3^n)
  • Identical expressions

  • one /(x*(one - one /x)^ two)
  • 1 divide by (x multiply by (1 minus 1 divide by x) squared )
  • one divide by (x multiply by (one minus one divide by x) to the power of two)
  • 1/(x*(1-1/x)2)
  • 1/x*1-1/x2
  • 1/(x*(1-1/x)²)
  • 1/(x*(1-1/x) to the power of 2)
  • 1/(x(1-1/x)^2)
  • 1/(x(1-1/x)2)
  • 1/x1-1/x2
  • 1/x1-1/x^2
  • 1 divide by (x*(1-1 divide by x)^2)
  • Similar expressions

  • 1/(x*(1+1/x)^2)

Sum of series 1/(x*(1-1/x)^2)



=

The solution

You have entered [src]
  oo             
_____            
\    `           
 \         1     
  \    ----------
   \            2
   /     /    1\ 
  /    x*|1 - -| 
 /       \    x/ 
/____,           
x = 2            
$$\sum_{x=2}^{\infty} \frac{1}{x \left(1 - \frac{1}{x}\right)^{2}}$$
Sum(1/(x*(1 - 1/x)^2), (x, 2, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{x \left(1 - \frac{1}{x}\right)^{2}}$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = \frac{1}{x \left(1 - \frac{1}{x}\right)^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{x \to \infty}\left(\frac{\left(1 - \frac{1}{x + 1}\right)^{2} \left(x + 1\right) \left|{\frac{1}{\left(1 - \frac{1}{x}\right)^{2}}}\right|}{x}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series 1/(x*(1-1/x)^2)

    Examples of finding the sum of a series