Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 5/n 5/n
  • (-1)^n*2^n/factorial(n) (-1)^n*2^n/factorial(n)
  • sin(x/2^n)*cos(3*x/2^n)
  • sin(n*x)/(n^2+1)
  • Identical expressions

  • sin(n*x)/(n^ two + one)
  • sinus of (n multiply by x) divide by (n squared plus 1)
  • sinus of (n multiply by x) divide by (n to the power of two plus one)
  • sin(n*x)/(n2+1)
  • sinn*x/n2+1
  • sin(n*x)/(n²+1)
  • sin(n*x)/(n to the power of 2+1)
  • sin(nx)/(n^2+1)
  • sin(nx)/(n2+1)
  • sinnx/n2+1
  • sinnx/n^2+1
  • sin(n*x) divide by (n^2+1)
  • Similar expressions

  • sin(n*x)/(n^2-1)

Sum of series sin(n*x)/(n^2+1)



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \    sin(n*x)
  \   --------
  /     2     
 /     n  + 1 
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{\sin{\left(n x \right)}}{n^{2} + 1}$$
Sum(sin(n*x)/(n^2 + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\sin{\left(n x \right)}}{n^{2} + 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\sin{\left(n x \right)}}{n^{2} + 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(\left(n + 1\right)^{2} + 1\right) \left|{\frac{\sin{\left(n x \right)}}{\sin{\left(x \left(n + 1\right) \right)}}}\right|}{n^{2} + 1}\right)$$
Let's take the limit
we find
True

False

    Examples of finding the sum of a series