Mister Exam

Other calculators


1/(25n^2+5n-6)

Sum of series 1/(25n^2+5n-6)



=

The solution

You have entered [src]
  oo                 
____                 
\   `                
 \           1       
  \   ---------------
  /       2          
 /    25*n  + 5*n - 6
/___,                
n = 1                
$$\sum_{n=1}^{\infty} \frac{1}{\left(25 n^{2} + 5 n\right) - 6}$$
Sum(1/(25*n^2 + 5*n - 6), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\left(25 n^{2} + 5 n\right) - 6}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{25 n^{2} + 5 n - 6}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\left(5 n + 25 \left(n + 1\right)^{2} - 1\right) \left|{\frac{1}{25 n^{2} + 5 n - 6}}\right|\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
 Gamma(13/5) 
-------------
24*Gamma(8/5)
$$\frac{\Gamma\left(\frac{13}{5}\right)}{24 \Gamma\left(\frac{8}{5}\right)}$$
gamma(13/5)/(24*gamma(8/5))
Numerical answer [src]
0.0666666666666666666666666666667
0.0666666666666666666666666666667
The graph
Sum of series 1/(25n^2+5n-6)

    Examples of finding the sum of a series