Mister Exam

Other calculators


(1)/(n^2+13n+40)

Sum of series (1)/(n^2+13n+40)



=

The solution

You have entered [src]
  oo                
____                
\   `               
 \          1       
  \   --------------
  /    2            
 /    n  + 13*n + 40
/___,               
n = 1               
$$\sum_{n=1}^{\infty} \frac{1}{\left(n^{2} + 13 n\right) + 40}$$
Sum(1/(n^2 + 13*n + 40), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\left(n^{2} + 13 n\right) + 40}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n^{2} + 13 n + 40}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{13 n + \left(n + 1\right)^{2} + 53}{n^{2} + 13 n + 40}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
            0         /        0\ 
  -25 + 21*e        2*\-3 + 4*e / 
---------------- + ---------------
   /          0\     /          0\
18*\-28 + 28*e /   9*\-28 + 28*e /
$$\frac{-25 + 21 e^{0}}{18 \left(-28 + 28 e^{0}\right)} + \frac{2 \left(-3 + 4 e^{0}\right)}{9 \left(-28 + 28 e^{0}\right)}$$
(-25 + 21*exp_polar(0))/(18*(-28 + 28*exp_polar(0))) + 2*(-3 + 4*exp_polar(0))/(9*(-28 + 28*exp_polar(0)))
Numerical answer [src]
0.144841269841269841269841269841
0.144841269841269841269841269841
The graph
Sum of series (1)/(n^2+13n+40)

    Examples of finding the sum of a series