Mister Exam

Other calculators


3/(8^(n-1))

Sum of series 3/(8^(n-1))



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \      3   
  \   ------
  /    n - 1
 /    8     
/___,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{3}{8^{n - 1}}$$
Sum(3/8^(n - 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{3}{8^{n - 1}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 3 \cdot 8^{1 - n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(8^{n} 8^{1 - n}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The answer [src]
24/7
$$\frac{24}{7}$$
24/7
Numerical answer [src]
3.42857142857142857142857142857
3.42857142857142857142857142857
The graph
Sum of series 3/(8^(n-1))

    Examples of finding the sum of a series