Given number:
$$\frac{\log{\left(\frac{n + 1}{n - 1} \right)}}{\sqrt{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\log{\left(\frac{n + 1}{n - 1} \right)}}{\sqrt{n}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n + 1} \left|{\log{\left(\frac{n + 1}{n - 1} \right)}}\right|}{\sqrt{n} \log{\left(\frac{n + 2}{n} \right)}}\right)$$
Let's take the limitwe find
True
False