Mister Exam

Other calculators


(1/√n)*ln((n+1)/(n-1))

Sum of series (1/√n)*ln((n+1)/(n-1))



=

The solution

You have entered [src]
  oo             
_____            
\    `           
 \        /n + 1\
  \    log|-----|
   \      \n - 1/
   /   ----------
  /        ___   
 /       \/ n    
/____,           
n = 1            
n=1log(n+1n1)n\sum_{n=1}^{\infty} \frac{\log{\left(\frac{n + 1}{n - 1} \right)}}{\sqrt{n}}
Sum(log((n + 1)/(n - 1))/sqrt(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
log(n+1n1)n\frac{\log{\left(\frac{n + 1}{n - 1} \right)}}{\sqrt{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=log(n+1n1)na_{n} = \frac{\log{\left(\frac{n + 1}{n - 1} \right)}}{\sqrt{n}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(n+1log(n+1n1)nlog(n+2n))1 = \lim_{n \to \infty}\left(\frac{\sqrt{n + 1} \left|{\log{\left(\frac{n + 1}{n - 1} \right)}}\right|}{\sqrt{n} \log{\left(\frac{n + 2}{n} \right)}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
Numerical answer [src]
Sum(log((n + 1)/(n - 1))/sqrt(n), (n, 1, oo))
Sum(log((n + 1)/(n - 1))/sqrt(n), (n, 1, oo))
The graph
Sum of series (1/√n)*ln((n+1)/(n-1))

    Examples of finding the sum of a series