Mister Exam

Other calculators


1/(log(log(n))^(log(n)))

Sum of series 1/(log(log(n))^(log(n)))



=

The solution

You have entered [src]
  oo                   
____                   
\   `                  
 \            1        
  \   -----------------
  /      log(n)        
 /    log      (log(n))
/___,                  
n = 3                  
$$\sum_{n=3}^{\infty} \frac{1}{\log{\left(\log{\left(n \right)} \right)}^{\log{\left(n \right)}}}$$
Sum(1/(log(log(n))^log(n)), (n, 3, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\log{\left(\log{\left(n \right)} \right)}^{\log{\left(n \right)}}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \log{\left(\log{\left(n \right)} \right)}^{- \log{\left(n \right)}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left|{\log{\left(\log{\left(n + 1 \right)} \right)}^{\log{\left(n + 1 \right)}}}\right|}{\left|{\log{\left(\log{\left(n \right)} \right)}^{\log{\left(n \right)}}}\right|}\right)$$
Let's take the limit
we find
$$1 = \lim_{n \to \infty}\left(\frac{\left|{\log{\left(\log{\left(n + 1 \right)} \right)}^{\log{\left(n + 1 \right)}}}\right|}{\left|{\log{\left(\log{\left(n \right)} \right)}^{\log{\left(n \right)}}}\right|}\right)$$
False
The rate of convergence of the power series
The answer [src]
  oo                    
 ___                    
 \  `                   
  \      -log(n)        
  /   log       (log(n))
 /__,                   
n = 3                   
$$\sum_{n=3}^{\infty} \log{\left(\log{\left(n \right)} \right)}^{- \log{\left(n \right)}}$$
Sum(log(log(n))^(-log(n)), (n, 3, oo))
The graph
Sum of series 1/(log(log(n))^(log(n)))

    Examples of finding the sum of a series