Mister Exam

Other calculators

Sum of series 1/x^2



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \    1 
  \   --
  /    2
 /    x 
/___,   
i = 1   
$$\sum_{i=1}^{\infty} \frac{1}{x^{2}}$$
Sum(1/(x^2), (i, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{x^{2}}$$
It is a series of species
$$a_{i} \left(c x - x_{0}\right)^{d i}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}$$
In this case
$$a_{i} = \frac{1}{x^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{i \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
oo
--
 2
x 
$$\frac{\infty}{x^{2}}$$
oo/x^2

    Examples of finding the sum of a series