Mister Exam

Other calculators

Sum of series 1/x^2



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \    1 
  \   --
  /    2
 /    x 
/___,   
i = 1   
i=11x2\sum_{i=1}^{\infty} \frac{1}{x^{2}}
Sum(1/(x^2), (i, 1, oo))
The radius of convergence of the power series
Given number:
1x2\frac{1}{x^{2}}
It is a series of species
ai(cxx0)dia_{i} \left(c x - x_{0}\right)^{d i}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limiaiai+1cR^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}
In this case
ai=1x2a_{i} = \frac{1}{x^{2}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limi11 = \lim_{i \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
oo
--
 2
x 
x2\frac{\infty}{x^{2}}
oo/x^2

    Examples of finding the sum of a series