Mister Exam

Sum of series -16



=

The solution

You have entered [src]
  oo     
 __      
 \ `     
  )   -16
 /_,     
x = 1    
$$\sum_{x=1}^{\infty} -16$$
Sum(-16, (x, 1, oo))
The radius of convergence of the power series
Given number:
$$-16$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = -16$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{x \to \infty} 1$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
-oo
$$-\infty$$
-oo
Numerical answer
The series diverges
The graph
Sum of series -16

    Examples of finding the sum of a series