Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-1+e^(3*x))/x
Limit of (e^x-e)/(-1+x)
Limit of ((-5+2*x)/(3+2*x))^(7*x)
Limit of (-4+x^2)/(-8+x^3)
Sum of series
:
-16
Identical expressions
- sixteen
minus 16
minus sixteen
Similar expressions
16
Limit of the function
/
-16
Limit of the function -16
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-16) n->oo
lim
n
→
∞
−
16
\lim_{n \to \infty} -16
n
→
∞
lim
−
16
Limit(-16, n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
−
16
=
−
16
\lim_{n \to \infty} -16 = -16
n
→
∞
lim
−
16
=
−
16
lim
n
→
0
−
−
16
=
−
16
\lim_{n \to 0^-} -16 = -16
n
→
0
−
lim
−
16
=
−
16
More at n→0 from the left
lim
n
→
0
+
−
16
=
−
16
\lim_{n \to 0^+} -16 = -16
n
→
0
+
lim
−
16
=
−
16
More at n→0 from the right
lim
n
→
1
−
−
16
=
−
16
\lim_{n \to 1^-} -16 = -16
n
→
1
−
lim
−
16
=
−
16
More at n→1 from the left
lim
n
→
1
+
−
16
=
−
16
\lim_{n \to 1^+} -16 = -16
n
→
1
+
lim
−
16
=
−
16
More at n→1 from the right
lim
n
→
−
∞
−
16
=
−
16
\lim_{n \to -\infty} -16 = -16
n
→
−
∞
lim
−
16
=
−
16
More at n→-oo
Rapid solution
[src]
-16
−
16
-16
−
16
Expand and simplify
The graph