Mister Exam

Other calculators

Sum of series log(1-3/n)



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \      /    3\
   )  log|1 - -|
  /      \    n/
 /__,           
n = 1           
n=1log(13n)\sum_{n=1}^{\infty} \log{\left(1 - \frac{3}{n} \right)}
Sum(log(1 - 3/n), (n, 1, oo))
The radius of convergence of the power series
Given number:
log(13n)\log{\left(1 - \frac{3}{n} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=log(13n)a_{n} = \log{\left(1 - \frac{3}{n} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limnlog(13n)log(13n+1)1 = \lim_{n \to \infty} \left|{\frac{\log{\left(1 - \frac{3}{n} \right)}}{\log{\left(1 - \frac{3}{n + 1} \right)}}}\right|
Let's take the limit
we find
True

False
Numerical answer [src]
Sum(log(1 - 3/n), (n, 1, oo))
Sum(log(1 - 3/n), (n, 1, oo))

    Examples of finding the sum of a series