Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 1/(3n-2)*(3n+1) 1/(3n-2)*(3n+1)
  • 1/ln(n) 1/ln(n)
  • 14/(49n^2-70n-24) 14/(49n^2-70n-24)
  • sqrt((k*x^2)/m)
  • Identical expressions

  • log(one - three /n^ two)
  • logarithm of (1 minus 3 divide by n squared )
  • logarithm of (one minus three divide by n to the power of two)
  • log(1-3/n2)
  • log1-3/n2
  • log(1-3/n²)
  • log(1-3/n to the power of 2)
  • log1-3/n^2
  • log(1-3 divide by n^2)
  • Similar expressions

  • log(1+3/n^2)

Sum of series log(1-3/n^2)



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \       /    3 \
  \   log|1 - --|
  /      |     2|
 /       \    n /
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \log{\left(1 - \frac{3}{n^{2}} \right)}$$
Sum(log(1 - 3/n^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\log{\left(1 - \frac{3}{n^{2}} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \log{\left(1 - \frac{3}{n^{2}} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\log{\left(1 - \frac{3}{n^{2}} \right)}}{\log{\left(1 - \frac{3}{\left(n + 1\right)^{2}} \right)}}}\right|$$
Let's take the limit
we find
True

False
Numerical answer [src]
-1.98728714190023218939231840466 + 3.14159265358979323846264338328*i
-1.98728714190023218939231840466 + 3.14159265358979323846264338328*i

    Examples of finding the sum of a series