Mister Exam

Other calculators

Sum of series log(1-3/n2)



=

The solution

You have entered [src]
  oo             
 ___             
 \  `            
  \      /    3 \
   )  log|1 - --|
  /      \    n2/
 /__,            
n = 1            
$$\sum_{n=1}^{\infty} \log{\left(1 - \frac{3}{n_{2}} \right)}$$
Sum(log(1 - 3/n2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\log{\left(1 - \frac{3}{n_{2}} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \log{\left(1 - \frac{3}{n_{2}} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
      /    3 \
oo*log|1 - --|
      \    n2/
$$\infty \log{\left(1 - \frac{3}{n_{2}} \right)}$$
oo*log(1 - 3/n2)

    Examples of finding the sum of a series