Mister Exam

Other calculators

Sum of series ln(x)^n



=

The solution

You have entered [src]
  oo         
 ___         
 \  `        
  \      n   
  /   log (x)
 /__,        
n = 1        
$$\sum_{n=1}^{\infty} \log{\left(x \right)}^{n}$$
Sum(log(x)^n, (n, 1, oo))
The answer [src]
/   log(x)                      
| ----------    for |log(x)| < 1
| 1 - log(x)                    
|                               
|  oo                           
< ___                           
| \  `                          
|  \      n                     
|  /   log (x)     otherwise    
| /__,                          
\n = 1                          
$$\begin{cases} \frac{\log{\left(x \right)}}{1 - \log{\left(x \right)}} & \text{for}\: \left|{\log{\left(x \right)}}\right| < 1 \\\sum_{n=1}^{\infty} \log{\left(x \right)}^{n} & \text{otherwise} \end{cases}$$
Piecewise((log(x)/(1 - log(x)), Abs(log(x)) < 1), (Sum(log(x)^n, (n, 1, oo)), True))

    Examples of finding the sum of a series