Mister Exam

Other calculators


1/n^1,5

Sum of series 1/n^1,5



=

The solution

You have entered [src]
  oo      
____      
\   `     
 \     1  
  \   ----
  /    3/2
 /    n   
/___,     
n = 1     
n=11n32\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}
Sum(1/(n^(3/2)), (n, 1, oo))
The radius of convergence of the power series
Given number:
1n32\frac{1}{n^{\frac{3}{2}}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1n32a_{n} = \frac{1}{n^{\frac{3}{2}}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+1)32n32)1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{\frac{3}{2}}}{n^{\frac{3}{2}}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.02.0
The answer [src]
zeta(3/2)
ζ(32)\zeta\left(\frac{3}{2}\right)
zeta(3/2)
Numerical answer [src]
2.61237534868548834334789184423
2.61237534868548834334789184423
The graph
Sum of series 1/n^1,5

    Examples of finding the sum of a series