Mister Exam

Integral of ln(x)^n dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     n      
 |  log (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \log{\left(x \right)}^{n}\, dx$$
Integral(log(x)^n, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

      UpperGammaRule(a=1, e=n, context=_u**n*exp(_u), symbol=_u)

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                          
 |                                                           
 |    n                      -n    n                         
 | log (x) dx = C + (-log(x))  *log (x)*Gamma(1 + n, -log(x))
 |                                                           
/                                                            
$$\int \log{\left(x \right)}^{n}\, dx = C + \left(- \log{\left(x \right)}\right)^{- n} \log{\left(x \right)}^{n} \Gamma\left(n + 1, - \log{\left(x \right)}\right)$$
The answer [src]
  1           
  /           
 |            
 |     n      
 |  log (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \log{\left(x \right)}^{n}\, dx$$
=
=
  1           
  /           
 |            
 |     n      
 |  log (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \log{\left(x \right)}^{n}\, dx$$
Integral(log(x)^n, (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.