1 / | | n | log (x) dx | / 0
Integral(log(x)^n, (x, 0, 1))
Let .
Then let and substitute :
UpperGammaRule(a=1, e=n, context=_u**n*exp(_u), symbol=_u)
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | n -n n | log (x) dx = C + (-log(x)) *log (x)*Gamma(1 + n, -log(x)) | /
1 / | | n | log (x) dx | / 0
=
1 / | | n | log (x) dx | / 0
Integral(log(x)^n, (x, 0, 1))
Use the examples entering the upper and lower limits of integration.