Mister Exam

Sum of series ln(x)/x



=

The solution

You have entered [src]
  oo        
 ___        
 \  `       
  \   log(x)
   )  ------
  /     x   
 /__,       
x = 2       
$$\sum_{x=2}^{\infty} \frac{\log{\left(x \right)}}{x}$$
Sum(log(x)/x, (x, 2, oo))
The radius of convergence of the power series
Given number:
$$\frac{\log{\left(x \right)}}{x}$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = \frac{\log{\left(x \right)}}{x}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{x \to \infty}\left(\frac{\left(x + 1\right) \left|{\log{\left(x \right)}}\right|}{x \log{\left(x + 1 \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer
The series diverges
The graph
Sum of series ln(x)/x

    Examples of finding the sum of a series