Mister Exam

# Sum of series sinn/sqrtn

=

### The solution

You have entered [src]
  oo
____
\
\    sin(n)
\   ------
/     ___
/    \/ n
/___,
n = 1       
$$\sum_{n=1}^{\infty} \frac{\sin{\left(n \right)}}{\sqrt{n}}$$
Sum(sin(n)/sqrt(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\sin{\left(n \right)}}{\sqrt{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\sin{\left(n \right)}}{\sqrt{n}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n + 1} \left|{\frac{\sin{\left(n \right)}}{\sin{\left(n + 1 \right)}}}\right|}{\sqrt{n}}\right)$$
Let's take the limit
we find
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n + 1} \left|{\frac{\sin{\left(n \right)}}{\sin{\left(n + 1 \right)}}}\right|}{\sqrt{n}}\right)$$
False`
The rate of convergence of the power series