Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • sqrt(n+1)-sqrt(n)/sqrt(n^2+n) sqrt(n+1)-sqrt(n)/sqrt(n^2+n)
  • (3*x^2-2*x+3)/factorial(x+1) (3*x^2-2*x+3)/factorial(x+1)
  • 1/ln(5^n) 1/ln(5^n)
  • 1/ 1/
  • Identical expressions

  • (twelve *ln(x))/(x^ three)
  • (12 multiply by ln(x)) divide by (x cubed )
  • (twelve multiply by ln(x)) divide by (x to the power of three)
  • (12*ln(x))/(x3)
  • 12*lnx/x3
  • (12*ln(x))/(x³)
  • (12*ln(x))/(x to the power of 3)
  • (12ln(x))/(x^3)
  • (12ln(x))/(x3)
  • 12lnx/x3
  • 12lnx/x^3
  • (12*ln(x)) divide by (x^3)

Sum of series (12*ln(x))/(x^3)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \    12*log(x)
  \   ---------
  /        3   
 /        x    
/___,          
n = 1          
n=112log(x)x3\sum_{n=1}^{\infty} \frac{12 \log{\left(x \right)}}{x^{3}}
Sum((12*log(x))/x^3, (n, 1, oo))
The radius of convergence of the power series
Given number:
12log(x)x3\frac{12 \log{\left(x \right)}}{x^{3}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=12log(x)x3a_{n} = \frac{12 \log{\left(x \right)}}{x^{3}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
oo*log(x)
---------
     3   
    x    
log(x)x3\frac{\infty \log{\left(x \right)}}{x^{3}}
oo*log(x)/x^3

    Examples of finding the sum of a series