Mister Exam

Other calculators

Sum of series ln(1+2x+3x^2)



=

The solution

You have entered [src]
  oo                     
 ___                     
 \  `                    
  \      /             2\
  /   log\1 + 2*x + 3*x /
 /__,                    
n = 1                    
$$\sum_{n=1}^{\infty} \log{\left(3 x^{2} + \left(2 x + 1\right) \right)}$$
Sum(log(1 + 2*x + 3*x^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\log{\left(3 x^{2} + \left(2 x + 1\right) \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \log{\left(3 x^{2} + 2 x + 1 \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
      /             2\
oo*log\1 + 2*x + 3*x /
$$\infty \log{\left(3 x^{2} + 2 x + 1 \right)}$$
oo*log(1 + 2*x + 3*x^2)

    Examples of finding the sum of a series