Mister Exam

Other calculators


ln(5)^n/n!

Sum of series ln(5)^n/n!



=

The solution

You have entered [src]
  oo         
____         
\   `        
 \       n   
  \   log (5)
  /   -------
 /       n!  
/___,        
n = 1        
n=1log(5)nn!\sum_{n=1}^{\infty} \frac{\log{\left(5 \right)}^{n}}{n!}
Sum(log(5)^n/factorial(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
log(5)nn!\frac{\log{\left(5 \right)}^{n}}{n!}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1n!a_{n} = \frac{1}{n!}
and
x0=log(5)x_{0} = - \log{\left(5 \right)}
,
d=1d = 1
,
c=0c = 0
then
R=~(log(5)+limn(n+1)!n!)R = \tilde{\infty} \left(- \log{\left(5 \right)} + \lim_{n \to \infty} \left|{\frac{\left(n + 1\right)!}{n!}}\right|\right)
Let's take the limit
we find
R=R = \infty
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.05.0
The answer [src]
4
44
4
Numerical answer [src]
4.00000000000000000000000000000
4.00000000000000000000000000000
The graph
Sum of series ln(5)^n/n!

    Examples of finding the sum of a series