Mister Exam

Other calculators


1/ln(5^n)

Sum of series 1/ln(5^n)



=

The solution

You have entered [src]
  oo         
____         
\   `        
 \       1   
  \   -------
  /      / n\
 /    log\5 /
/___,        
n = 1        
n=11log(5n)\sum_{n=1}^{\infty} \frac{1}{\log{\left(5^{n} \right)}}
Sum(1/log(5^n), (n, 1, oo))
The radius of convergence of the power series
Given number:
1log(5n)\frac{1}{\log{\left(5^{n} \right)}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1log(5n)a_{n} = \frac{1}{\log{\left(5^{n} \right)}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limnlog(5n+1)log(5n)1 = \lim_{n \to \infty} \left|{\frac{\log{\left(5^{n + 1} \right)}}{\log{\left(5^{n} \right)}}}\right|
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.502
The answer [src]
oo
\infty
oo
Numerical answer
The series diverges
The graph
Sum of series 1/ln(5^n)

    Examples of finding the sum of a series