Mister Exam

Other calculators

Sum of series exp(-n*b)



=

The solution

You have entered [src]
  oo       
 ___       
 \  `      
  \    -n*b
  /   e    
 /__,      
n = 1      
$$\sum_{n=1}^{\infty} e^{b \left(- n\right)}$$
Sum(exp((-n)*b), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$e^{b \left(- n\right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 1$$
and
$$x_{0} = - e$$
,
$$d = - b$$
,
$$c = 0$$
then
$$R^{- b} = \tilde{\infty} \left(- e + \lim_{n \to \infty} 1\right)$$
Let's take the limit
we find
False

$$R = \tilde{\infty}^{- \frac{1}{b}}$$
The answer [src]
  oo       
 ___       
 \  `      
  \    -b*n
  /   e    
 /__,      
n = 1      
$$\sum_{n=1}^{\infty} e^{- b n}$$
Sum(exp(-b*n), (n, 1, oo))

    Examples of finding the sum of a series