Mister Exam

Other calculators


tan(sqrt(n)/(n^2+1))
  • How to use it?

  • Sum of series:
  • 24/(9n^2-12n-5) 24/(9n^2-12n-5)
  • (3^(n+2)-2*6^n)/18^n (3^(n+2)-2*6^n)/18^n
  • (-1)^nx^n/n!
  • ((2*n+4)/(5*n+7))^n*x^n
  • Identical expressions

  • tan(sqrt(n)/(n^ two + one))
  • tangent of ( square root of (n) divide by (n squared plus 1))
  • tangent of ( square root of (n) divide by (n to the power of two plus one))
  • tan(√(n)/(n^2+1))
  • tan(sqrt(n)/(n2+1))
  • tansqrtn/n2+1
  • tan(sqrt(n)/(n²+1))
  • tan(sqrt(n)/(n to the power of 2+1))
  • tansqrtn/n^2+1
  • tan(sqrt(n) divide by (n^2+1))
  • Similar expressions

  • tan(sqrt(n)/(n^2-1))

Sum of series tan(sqrt(n)/(n^2+1))



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \       /  ___ \
  \      |\/ n  |
   )  tan|------|
  /      | 2    |
 /       \n  + 1/
/___,            
n = 1            
n=1tan(nn2+1)\sum_{n=1}^{\infty} \tan{\left(\frac{\sqrt{n}}{n^{2} + 1} \right)}
Sum(tan(sqrt(n)/(n^2 + 1)), (n, 1, oo))
The radius of convergence of the power series
Given number:
tan(nn2+1)\tan{\left(\frac{\sqrt{n}}{n^{2} + 1} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=tan(nn2+1)a_{n} = \tan{\left(\frac{\sqrt{n}}{n^{2} + 1} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limntan(nn2+1)tan(n+1(n+1)2+1)1 = \lim_{n \to \infty} \left|{\frac{\tan{\left(\frac{\sqrt{n}}{n^{2} + 1} \right)}}{\tan{\left(\frac{\sqrt{n + 1}}{\left(n + 1\right)^{2} + 1} \right)}}}\right|
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.02.0
The graph
Sum of series tan(sqrt(n)/(n^2+1))

    Examples of finding the sum of a series