Mister Exam

Other calculators


arctan(n+3)-arctan(n+1)

Sum of series arctan(n+3)-arctan(n+1)



=

The solution

You have entered [src]
  oo                             
 __                              
 \ `                             
  )   (atan(n + 3) - atan(n + 1))
 /_,                             
n = 1                            
$$\sum_{n=1}^{\infty} \left(- \operatorname{atan}{\left(n + 1 \right)} + \operatorname{atan}{\left(n + 3 \right)}\right)$$
Sum(atan(n + 3) - atan(n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$- \operatorname{atan}{\left(n + 1 \right)} + \operatorname{atan}{\left(n + 3 \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = - \operatorname{atan}{\left(n + 1 \right)} + \operatorname{atan}{\left(n + 3 \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\operatorname{atan}{\left(n + 1 \right)} - \operatorname{atan}{\left(n + 3 \right)}}{\operatorname{atan}{\left(n + 2 \right)} - \operatorname{atan}{\left(n + 4 \right)}}}\right|$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
pi - atan(2) - atan(3)
$$- \operatorname{atan}{\left(3 \right)} - \operatorname{atan}{\left(2 \right)} + \pi$$
pi - atan(2) - atan(3)
Numerical answer [src]
0.785398163397448309615660845820
0.785398163397448309615660845820
The graph
Sum of series arctan(n+3)-arctan(n+1)

    Examples of finding the sum of a series